
Communication Protocol Datasheet

The communication between the odroid and Arduino works over UART. It follows a packet
based system. The protocol does not incorporate ACK/NAK, error detection, or data requests.
Both parties will send information as they see fit. The system does use heartbeats to verify the
other party is alive and in a state to receive commands.

Packets

START – 0xAA (1 byte) Message ID (1 byte)

Payload(1 – 30 bytes)

The packets are extremely simple and ARE susceptible to framing errors. Meaning packets may
get lost or corrupted if the START byte exists in the message ID or Payload and the system isn’t
aligned. This should occur very rarely because once the transmitter and receiver are aligned, it
is very unlikely they will become unaligned. Additionally, most of the packets send will be
streamed at a high rate. So if one packets doesn’t make it, it doesn’t really matter because the
system will realign by the time the next packet is sent.

Messages

Message definitions are predefined. This protocol must be implemented by both parties for
proper decoding. Some messages are designed to be sent by only the Arduino and others only
by the odroid. Some can be sent by both.

Sent by Arduino:

CHANNELS_IN

Description Decoded PPM signals from RC receiver; Meant to be streamed at a
constant rate(~40hz) at all times

Message ID 0x01

Message
Length

10 bytes

Field Type Unit Min Max Description

Throttle uint16_t microseconds 900 2100 Throttle channel

Steering uint16_t microseconds 900 2100 Steering channel

AUX1 uint16_t microseconds 900 2100 Extra channel

AUX2 uint16_t microseconds 900 2100 Extra channel

Sent by Odroid:

CONTROL

Description Set actuator positions using computer control; Meant to be streamed at a
constant rate(~30hz) during computer control

Message ID 0x02

Message
Length

10 bytes

Field Type Unit Min Max Description

Throttle uint16_t microseconds 900 2100 Throttle channel

Steering uint16_t microseconds 900 2100 Steering channel

AUX1 uint16_t microseconds 900 2100 Extra channel

AUX2 uint16_t microseconds 900 2100 Extra channel

SET_MODE

Description Attempt to change mode on Arduino; Sent to request a mode change

Message ID 0x03

Message
Length

3 bytes

Field Type Unit Min Max Description

Mode uint8_t MODE_ENUM 0 255 Mode

Bidirectional:

HEARTBEAT

Description Sent to notify party other of presence and contains additional system state;
Streamed at all times at a constant rate(~2hz) by both parties

Message ID 0x00

Message
Length

4 bytes

Field Type Unit Min Max Description

Mode uint8_t MODE_ENUM 0 255 Current Arduino
mode. This field
can be ignored
when sent from
odroid

Errors uint8_t BITMASK 0 255 Error bitmask

DEBUG

Description Message for sending debug values; It can be sent by both parties, but it
was designed to debug on the Arduino

Message ID 0x04

Message
Length

14 bytes

Field Type Unit Min Max Description

Value 0 float n/a Debug value

Value 1 float n/a Debug value

Value 2 float n/a Debug value

Modes
Modes are a data type used by SET_MODE and HEARTBEAT messages to signify or change
the mode on the Arduino.

Mode ID Description

MANUAL 0x00 The driver is in control

AUTO 0x01 The computer is in control

FAILSAFE 0x02 The system encountered a
critical error and is in
standby.

INVALID 0xFF Not sure why I made this.
Implemented by has no use

Error bitmask
The heartbeat message has an error bitmask to indicate Arduino system status. This bitmask is
currently not defined. This should probably be called status bitmask but oh well. Additionally,
this field could be used to express errors in terms of error IDs instead of a bitmask

Bit Number Name Description

0 N/A 0 = ; 1 = ;

1 N/A

2 N/A

3 N/A

4 N/A

5 N/A

6 N/A

7 N/A

