
Co Processor Specifications

Summary
The goal of the coprocessor is to connect the onboard computer to the vehicle. It will allow the
onboard computer to talk to the vehicle’s radio controller, steering, and throttle. It will do this by
decoding PPM(Pulse Position Modulation) signals and encoding PWM signal(Pulse Width
Modulation) and communicating with onboard computer over serial.

PPM Decoder

Summary
The job of the PPM decoder is to decode the PPM signal from the RC receiver onboard the
vehicle.

PPM

PPM stands for Pulse Position Modulation and can encode multiple channels of information on
a single wire(It also used interchangeably with CPPM). A channel contains a value from
500-2000. Standard PPM encodes 8 channels. PPM is a frame based one way communication.
A frame encodes all channels and starting/ending pulses. Frames usually come(last) every

20ms. Channels are encoded into frames using pulse length. The length of the pulse in
microseconds directly corresponds to the value for that channel(i.e. 1000us pulse -> 1000).
Channel pulses are sent sequentially. The first pulse corresponds to the first channel and so on.
There are gaps,called stop pulses, between channels pulses in order to separate channels.
PPM can be encoded active high or active low. Active high means channels are encoded over
high pulses and gaps are on low pulses. Active low inverts this. This characteristic is dependent
on the PPM receiver. Another thing that is dependent on the manufacturer is frame width and
starting and end pulses.

FR Sky PPM
The PPM receiver our team is using the FR Sky DR4-II. ​It is a 4 channel receiver in PWM
mode but 8 channel in PPM mode. ​A jumper must be placed between 2 pins in order to put it
into PPM mode. See image on Fr sky PPM below.

Notes:

● This signal is active low
● stop pulse is actually incorporated into the total time for the channel
● Frame length 22.5ms

Arduino Implementation
The best way to decode PPM in a non blocking way is to use hardware pin interrupts. These
interrupts are triggered on rising/falling edges and call an ISR(interrupt service routine) function.
The end goal is to have an int array that contains all 8 channels values and is updated
every 20ms in a non blocking manner.​ Even though we’ll only need 2~4 channels, it is
easiest to decode and store all 8. There are many examples of people who have made arduino
PPM decoders so we should not have to write one from scratch. Listed below are examples:

1. https://github.com/claymation/CPPM
2. https://github.com/jantje/ArduinoLibraries/tree/master/RCLib

Note: Some implementations use hardware timers which may be used by other pins for PWM
generation. So we must be careful that we properly allocate our hardware timers so they don’t
overlap.

https://github.com/jantje/ArduinoLibraries/tree/master/RCLib
https://github.com/claymation/CPPM

PWM Encoder

Summary
The goal of the PWM encoder is to encode PWM signals for the electronic speed
controller(ESC) and steering servo.

PWM
PWM stands for Pulse Width Modulation and it encode a single channel of data on a single line.
A channel can encode a data value from 1000 to 2000. Like PPM, PWM is frame based but
much simpler. PWM frames occur every 20 ms. The first part of the frame is a high pulse of
length 1000 microseconds to 2000 microseconds. Like PPM, microseconds correspond directly
with channel value. The remaining time of the frame is a low pulse 18000 - 19000 us seconds
long. Then the next frame occurs. There are no start or stop pulses since it is a single channel.

Servo vs ESC
Both the servo and ESC operate using 1000-2000 microsecond PWM signals. For ​most​ servos
1500us is the center point(90 degrees), 1000 us means left(0 degrees) and 2000 us means
right(180 degrees). For the ESC 1500us means neutral, 1000us is full reverse, and 2000us is
full forward.

Arduino Implementation
Arduino has built in PWM generation so it only requires a few lines of code to move a
servo/ESC. We will use the Servo.h library and writeMicroseconds() generate PWM. Since
PWM uses hardware timers, not all pins support it. This means we have to be careful with our
pin selection and also make sure it doesn’t interfere with the PPM decoder.

Communication

Summary
The co processor will communicate with the onboard computer using usb serial. This allows the
onboard to send commands to vehicle while monitoring the user input from the receiver.

Data
The data sent across the serial lines will be bi-directional. The data will packaged in packets and
will be defined by a specific set of messages.

● Heartbeat​: Sent at a constant interval by both devices to verify they are alive. Contains
the current mode.

● Channels_in​: Decoded RC receiver channels sent at a constant interval from
coprocessor. Don’t need to monitor all 8. So we only send 4

● Control:​ Sent from the onboard computer to control the throttle and steering
● Set_mode​: Sent from the onboard computer to change the operation mode of the

coprocessor
● Error: ​For sending error codes to the onboard computer
● Debug: ​For sending debug messages to the onboard computer

Packet Format
Packets are byte arrays that contain messages. The packet format will be as follows.

Byte 0: start byte
Byte 1: Message id
Byte 2+: payload

The message length and payload will depend on the message id.
Msg_length = start_byte(1) + msg_id(1) + payload_len

Msg_id Msg_type Msg_length Field 1 Field 2 Field 3 Field 4

0x00 Heartbeat 3 Mode - enum(1)

0x01 Channels_in 10 Ch1 - short(2) Ch2 - short(2) Ch3 - short(2) Ch4 - short(2)

0x02 Control 6 Throttle -
short(2)

Steer - short(2)

0x03 Set_mode 3 Mode - enum(1)

0x04 Error 5 Error Code -
byte(1)

Error data -
short(2)

0x05 Debug 14 Value 1 - long(4) Value 2 - long(4) Value 3 - long(4)

Data Rate
● Heartbeat

○ All Mode: 2Hz bidirectional
● Channels_in

○ All Modes: 50hz to onboard computer
● Control

○ Manual Mode: Not sent
○ Auto Mode: Framerate -> 5~30hz

● Set_mode
○ All Modes: Not sent on an interval. Sent when mode change requested

Error codes

Error Code Name Description

0x00 Invalid msg_id Message ID not supported

0x01 No RC Lost RC communication

0x02 No Heartbeat Lost Serial contact

0x03 Invalid value range Packet contained data with invalid range

Alternative: Have an error bit mask and error extra fields that gets sent with heartbeat. Could be
more real time, light weight approach.

Modes of operation

Summary
The coprocessor can run in 3 modes. Manual mode which will act as a passthrough

mode for collecting data from human driver, and Auto mode which will accept controls
commands from the onboard computer, and Failsafe mode which will shut down the vehicle
when communication fails.

Manual Mode
Manual mode is simply a pass through mode that will be used for user control of the

vehicle. Manual mode will decode PPM from the receiver and encode it to PWM to the servo
and ESC. The decoded PPM will be packaged and sent to onboard computer using the
channels_in message. If the PPM signal goes into failsafe state, which means a radio
disconnect, the coprocessor will switch to failsafe mode. Switching out of manual mode can be
achieved using the set_mode message or changing the value of channel 3 on the RC
transmitter.

Auto Mode
Auto mode is computer control mode. Auto mode will decode PPM from the receiver and

send it to the onboard computer. It will also receive control messages from the onboard
computer and encode it to PWM for the servo and ESC. If the PPM signal goes into failsafe
state, which means a radio disconnect, the coprocessor will switch to failsafe mode. Switching
out of auto mode can be achieved using the set_mode message or changing the value of
channel 3 on the RC transmitter.

Failsafe Mode
Failsafe mode occurs when heartbeat messages timeout, the RC transmitter

disconnects, or the user switches into failsafe mode. Failsafe mode puts the ESC in neutral and
centers the steering servo. The user or computer can only switch out of failsafe mode if the RC
transmitter is detected and heartbeat messages are streaming. If these conditions aren’t met
and a mode change is attempted then an error message will be sent. Switching out of auto
mode can be attempted using the set_mode message or changing the value of channel 3 on the
RC transmitter.

